The Radon transform on Abelian Groups

نویسندگان

  • Peter Frankl
  • Ronald L. Graham
چکیده

The Radon transform on a group A is a linear operator on the space of functions /: A-+ C. It is shown that if A = Z;: then the Radon transform with respect to a subset B c .4 is not invertible if and only if B has the same number of elements in every coset of some maximal subgroup of A. The same does not hold in general for arbitrary finite abelian groups. ' IW7 ACxhlK I%\\. 1°C Let A be a finite group and B c A, a subset. For every function j'~ A-+ @ one defines the function F,: A + Cc, the Radon transform qf,f with respect to B by F,(a)= c .f(ab). (1) h t H The principal problem we address here is: for which subsets B is the Radon transform invertible, i.e., knowledge of the function F, determines ,f uniquely. Such sets are called unique imersion sets. Unique inversion sets were investigated in Diaconis and Graham [ 11, where particular attention is given to the case A = 22;. The main result of this note gives a combinatorial description of unique inversion sets in .Z; when p is a prime. Let us say that B ts uniformly distributed modulo the subgroup A, < A if I B n aA,I is the same for all aE A. Note that this implies IA : A,\ divides 14.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Non-abelian Radon Transform. *

We consider the inverse prolem of the recovery of a gauge field in R 2 modulo gauge transformations from the non-abelian Radon transform. A global uniqueness theorem is proven for the case when the gauge field has a compact support. Extensions to the attenuated non-abelian Radon transform in R 2 and applications to the inverse scattering problem for the Schrödinger equation in R 2 with non-comp...

متن کامل

Truncated Counting Functions of Holomorphic Curves in Abelian Varieties

A new proof of the Second Main Theorem with truncation level 1 for Zariski-dense holomorphic curves into Abelian varieties, which has just been proved by Yamanoi [Y2], is presented. Our proof is based on the idea of the “Radon transform” introduced in [K2] combined with consideration on certain singular perturbation of the probability measures on the parameter space which appears in the “Radon ...

متن کامل

Quantum Error-Correction Codes on Abelian Groups

We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.

متن کامل

A tensor product approach to the abstract partial fourier transforms over semi-direct product groups

In this article, by using a partial on locally compact semi-direct product groups, we present a compatible extension of the Fourier transform. As a consequence, we extend the fundamental theorems of Abelian Fourier transform to non-Abelian case.

متن کامل

On Functions Which Are Fourier Transforms

1. Let G be a locally compact and abelian group, Gl the dual group. Through this paper, "Ml will denote the set of all bounded Radon measure n on G; this set will be considered as a Banach algebra when provided with the customary norm as the dual of the space Co(G) defined below and with the ring product defined as convolution. If /iGM1, its Fourier transform is by definition the bounded and co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 44  شماره 

صفحات  -

تاریخ انتشار 1987